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Abstract: In this paper, a fresh nature-inspired algorithm called the States of Matter Search (SOMS) is introduced 

to solve optimal reactive power dispatch problem. The SOMS algorithm is based on the simulation of the states of 

matter occurrence. In SOMS, individuals follow molecules which interact to each other by using evolutionary 

operations which are based on the physical principles of the thermal-energy motion mechanism. The algorithm is 

developed by considering each state of matter atone different exploration–exploitation ratio. The evolutionary 

process is divided into three phases which emulate the three states of matter: gas, liquid and solid. This method 

can significantly progress the balance between exploration–exploitation, yet conserving the good search 

capabilities of an evolutionary approach. The proposed SOMS algorithm has been tested on standard IEEE 30 bus 

test system and simulation results show clearly the better performance of the proposed algorithm in reducing the 

real power loss. 
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I.     INTRODUCTION 

Reactive power optimization places a significant role in optimal operation of power systems. Various numerical methods 

like the gradient method [1-2], Newton method [3] and linear programming [4-7] have been implemented to solve the 

optimal reactive power dispatch problem. Both   the gradient and Newton methods have the intricacy in managing 

inequality constraints. The problem of voltage stability and collapse play a key role in power system planning and 

operation [8].  Evolutionary algorithms such as genetic algorithm have been already projected to solve the reactive power 

flow problem [9-11]. Evolutionary algorithm is a heuristic methodology used for minimization problems by utilizing 

nonlinear and non-differentiable continuous space functions. In [12], Hybrid differential evolution algorithm is projected 

to increase the voltage stability index. In [13] Biogeography Based algorithm is projected to solve the reactive power 

dispatch problem. In [14], a fuzzy based method is used to solve the optimal reactive power scheduling method. In [15], 

an improved evolutionary programming is used to elucidate the optimal reactive power dispatch problem. In [16], the 

optimal reactive power flow problem is solved by integrating a genetic algorithm with a nonlinear interior point method. 

In [17], a pattern algorithm is used to solve ac-dc optimal reactive power flow model with the generator capability limits. 

In [18], F. Capitanescu proposes a two-step approach to calculate Reactive power reserves with respect to operating 

constraints and voltage stability.  In [19], a programming based approach is used to solve the optimal reactive power 

dispatch problem. In [20], A. Kargarian et al present a probabilistic algorithm for optimal reactive power provision in 

hybrid electricity markets with uncertain loads. This paper proposes States of Matter Search (SOMS) algorithm to solve 

reactive power dispatch problem. This algorithm [21] is devised by considering each state of matter at one different 

exploration–exploitation ratio. Thus, the evolutionary process is divided into three stages which emulate the three states of 

matter: gas, liquid and solid. At each state, molecules (individuals) exhibit different behaviours. Commencing from the 

gas state (pure exploration), the algorithm amends the concentrations of exploration and exploitation until the solid state 

(pure exploitation) is reached. As a result, the method can substantially progress the balance between exploration–

exploitation, yet conserving the good search capabilities of an evolutionary approach. The proposed SOMS algorithm has 

been evaluated on standard IEEE 57, bus test system. The simulation results show that our proposed approach 

outperforms all the entitled reported algorithms in minimization of real power loss. 
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II.     PROBLEM FORMULATION 

The OPF problem is considered as a common minimization problem with constraints, and can be written in the following 

form: 

Minimize f(x, u)                                                   (1)  

Subject to g(x,u)=0                                               (2)  

and 

                                                                   (3) 

Where f(x,u) is the objective function. g(x.u) and h(x,u) are respectively the set of equality and inequality constraints. x is 

the vector of state variables, and u is the vector of control variables. 

The state variables are the load buses (PQ buses) voltages, angles, the generator reactive powers and the slack active 

generator power: 

  (                                   )
 
   (4) 

The control variables are the generator bus voltages, the shunt capacitors and the transformers tap-settings: 

  (       )
 
                                                    (5) 

or 

  (                                )
 

        (6) 

Where Ng, Nt and Nc are the number of generators, number of tap transformers and the number of shunt compensators 

respectively. 

III.     OBJECTIVE FUNCTION 

A. Active power loss 

The objective of the reactive power dispatch is to minimize the active power loss in the transmission network, which can 

be mathematically described as follows: 

     ∑        (  
    

             )                        (7) 

or 

     ∑                ∑       
  
                    (8) 

Where gk: is the conductance of branch between nodes i and j, Nbr: is the total number of transmission lines in power 

systems. Pd: is the total active power demand, Pgi: is the generator active power of unit i, and Pgsalck: is the generator active 

power of slack bus. 

B. Voltage profile improvement 

For minimizing the voltage deviation in PQ buses, the objective function becomes: 

                                           (9) 

Where ωv: is a weighting factor of voltage deviation. 

VD is the voltage deviation given by: 

   ∑ |    |
   
                                    (10) 
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C. Equality Constraint  

The equality constraint g(x,u) of the ORPD problem is represented by the power balance equation, where the total power 

generation must cover the total power demand and the power losses: 

        (11) 

D. Inequality Constraints  

The inequality constraints h(x,u) imitate the limits on components in the power system as well as the limits created to 

ensure system security. Upper and lower bounds on the active power of slack bus, and reactive power of generators: 

       
                   

                    (12) 

   
           

                        (13) 

Upper and lower bounds on the bus voltage magnitudes:          

  
         

                           (14) 

Upper and lower bounds on the transformers tap ratios: 

  
         

                          (15) 

Upper and lower bounds on the compensators reactive powers: 

  
         

                       (16) 

Where N is the total number of buses, NT is the total number of Transformers; Ncis the total number of shunt reactive 

compensators. 

IV.     STATES OF MATTER 

The matter can take different phases which are commonly known as states. Traditionally, three states of matter are 

known: solid, liquid, and gas. The differences among such states are based on forces which are exerted among particles 

composing a material [22]. 

 

Fig 1(a) 

 

Fig1 (b) 
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Fig1 (c) 

Fig.1. Different states of matter: (a) gas, (b) liquid, and (c) solid. 

In the gas phase, molecules present enough kinetic energy so that the effect of intermolecular forces is small (or zero for 

an ideal gas), while the typical distance between neighboring molecules is greater than the molecular size. A gas has no 

definite shape or volume, but occupies the entire container in which it is confined. Fig. 1(a)[21] shows the movements 

exerted by particles in a gas state. The movement experimented by the molecules represent the maximum permissible 

displacement ρ1 among particles [23]. In a liquid state, intermolecular forces are more restrictive than those in the gas 

state. The molecules have enough energy to move relatively to each other still keeping a mobile structure. Therefore, the 

shape of a liquid is not definite but is determined by its container. Fig. 1(b) [21] presents a particle movement ρ2 within a 

liquid state. Such movement is smaller than those considered by the gas state but larger than the solid state [24]. In the 

solid state, particles (or molecules) are packed together closely with forces among particles being strong enough so that 

the particles cannot move freely but only vibrate. As a result, a solid has a stable, definite shape and a definite volume. 

Solids can only change their shape by force, as when they are broken or cut. Fig. 1(c) [21] shows a molecule 

configuration in a solid state. Under such conditions, particles are able to vibrate considering a minimal ρ3 distance [23]. 

V.     STATES OF MATTER SEARCH (SOMS) 

A.  Description of Operators 

In the approach, individuals are considered as molecules whose positions on a multidimensional space are modified as the 

algorithm progresses. The movement of such molecules is driven by the analogy to the motion of thermal-energy. The 

velocity and direction of each molecule‟s movement are determined by considering the collision, the attraction forces and 

the arbitrary phenomena experimented by the molecule set [25]. In our method, such behaviours have been applied by 

defining several operators such as the direction vector, the collision and the random positions operators, all of which 

emulate the behaviour of actual physics laws. The direction vector operator allocates a direction to each molecule in order 

to lead the particle movement as the evolution procedure takes place. On the other side, the collision operator mimics 

those collisions that are experimented by molecules as they interact to each other. A collision is considered when the 

distance between two molecules is shorter than a determined proximity distance. The collision operator is thus 

implemented by interchanging directions of the involved molecules. In order to simulate the arbitrary behaviour of 

molecules, the proposed algorithm produces arbitrary positions following a probabilistic condition that considers arbitrary 

locations within a feasible exploration space. 

B.  Direction vector 

The direction vector operator mimics the way in which molecules change their positions as the evolution process 

develops. For each n-dimensional molecule   from the population P, it is assigned an n dimensional direction vector 

  which stores the vector that controls the particle movement. Initially, all the direction vectors (  {            
})are 

randomly chosen within the range of [-1, 1]. As the system evolves, molecules experiment several attraction forces. In 
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order to simulate such forces, the proposed algorithm implements the attraction phenomenon by moving each molecule 

towards the bestso-far particle. Therefore, the new direction vector for each molecule is iteratively computed considering 

the following model: 

  
      

  (  
 

   
)             (17) 

where   represents the attraction unitary vector calculated as               ‖ 
       ‖ , being        thebest 

individual seen so-far, while    is the molecule i of population P. k represents the iteration number ,whereas gen involves 

the total iteration number that constitutes the complete evolution process. Under this operation, each particle is moved 

towards a new direction which combines the past direction, which was initially computed, with the attraction vector over 

the best individual seen so-far. It is important to point out that the relative importance of the past direction decreases as 

the evolving process advances. 

In order to calculate the new molecule position, it is necessary to compute the velocity   of eachmolecule by using: 

                            (18) 

Being      the initial velocity magnitude which is calculated as follows: 

      
∑ (  

    
   

   ) 
   

 
             (19)  

where  
    and   

    
are the low j parameter bound and the upper j parameter bound respectively, whereas β  [0,1] . 

Then, the new position for each molecule is updated by: 

    
        

                   (  
    

   
   )  (20) 

where 0.5  ρ  1. 

C.  Collision 

The collision operator mimics the collisions experimented by molecules while they interact to each other. Collisions are 

calculated if the distance between two molecules is shorter than a determined proximity value. Therefore, if‖     ‖  

 , a collision between molecules i and q is assumed; otherwise, there is no collision, considering      {       }such 

that   . If a collision occurs, the direction vector for each particle is modified by interchanging their respective direction 

vectors as follows: 

               (21) 

The collision radius is calculated by: 

  
∑ (  

    
   

   ) 
   

 
     (22) 

Where   [   ] 

Under this operator, a spatial region enclosed within the radius r is assigned to each particle. In case the particle regions 

collide to each other, the collision operator acts upon particles by forcing them out of the region. The radio r and the 

collision operator provide the ability to control diversity throughout the search process. In other words, the rate of 

increase or decrease of diversity is predetermined for each stage. The collision incorporation therefore enhances the 

exploratory behaviour in the proposed approach. 

D.  Random positions 

In order to simulate the random behaviour of molecules, the proposed algorithm generates random positions following a 

probabilistic criterion within a feasible search space. For this operation, a uniform random number rmis generated within 
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the range [0,1]. If rmis smaller than others hold H, a random molecule´s position is generated; otherwise, the element 

remains with no change. Therefore such operation can be modelled as follows: 

    
    {

  
              (  

    
   

   )                   

    
                       

              (23) 

Where   {       } and   {      } 

E. Best Element Updating 

Despite this updating operator does not belong to State of Matter metaphor, it is used to simply store thebest so-far 

solution. In order to update the best molecule p
best

 seen so-far, the best found individual fromthe current k population 

p
best,k

is compared to the best individual p
best,k-1

 of the last generation. If p
best,k

isbetter than p
best,k-1

 according to its fitness 

value, best p is updated with p
best,k

, otherwise p
best

remains withno change. Therefore, p
best

stores the best historical 

individual found so-far. 

F. General procedure 

At each stage, the same operations are implemented. However, depending on which state is referred, theyare employed 

considering a different parameter configuration. Such procedure is composed by five steps and maps the current 

population P
k
to a new population P

k+1
. The algorithm receives as input the current population P

k
andthe configuration 

parameters      and H, whereas it yields the new population P
k+1

. 

General procedure: 

Step A: Find the best element of the population       { } 

Step B: Calculate vinitand r 

Step C: Compute the new molecules by using the Direction vector operator. 

Step D: Solve collisions by using the Collision operator 

Step E: Generate new random positions by using the Random positions operator 

G. The complete algorithm 

The complete algorithm is divided into four different parts. The first corresponds to the initialization stage, whereas the 

last three represent the States of Matter. All the optimization process, which consists of a gen number of iterations, is 

organized into three different asymmetric phases, employing 50% of alliterations for the gas state (exploration), 40% for 

the liquid state (exploration-exploitation) and 10% for the solid state (exploitation). 

Initialization 

The algorithm begins by initializing a set P of Np molecule (  {            
})each molecule position piis an-

dimensional vector containing the parameter values to be optimized. Such values are randomly and uniformly distributed 

between the pre-specified lower initial parameter bound   
   and theupper initial parameter bound  

    
, just as it is 

described by the following expressions: 

    
    

              (  
    

   
   )(24) 

j=1,2,..,N , i=1,2,..,Np 

where j and i, are the parameter and molecule index respectively whereas zero indicates the initialpopulation. Hence,   
 
 is 

the j-th parameter of the i-thmolecule? 
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Gas state 

In the gas state, molecules experiment severe displacements and collisions. Such state is characterized by random 

movements produced by non-modelled molecule phenomena. Therefore, the   value fromthe direction vector operator is 

set to a value near to one so that the molecules can travel longer distances. Similarly, the H value representing the random 

positions operator is also configured to a value around one, in order to allow the random generation for other molecule 

positions. The gas state is the first phase and lasts for the 50% of all iterations which compose the complete optimization 

process. The computational procedure for the gas state can be summarized as follows: 

 

Step 1: Set the parameters    [0.8, 1],  = 0.8,   = 0.8 and H=0.9 being consistent with the gas state. 

Step 2: Apply the general procedure  

Step 3: If the 50% of the total iteration number is completed (1  k   0.5   gen) , then the process continues to the 

liquid state procedure; otherwise go back to step 2. 

Liquid state 

Although molecules currently at the liquid state exhibit restricted motion in comparison to the gas state, they still show a 

higher flexibility with respect to the solid state. Furthermore, the generation of random positions which are produced by 

non-modelled molecule phenomena is scarce. For this reason, the  value from the direction vector operator is bounded to 

a value between 0.3 and 0.6. Similarly, therandom position operator H is configured to a value near to cero in order to 

allow the random generation of fewer molecule positions. In the liquid state, collisions are also less common than in gas 

state, so the collision radius that is controlled by is set to a smaller value in comparison to the gas state. The liquid state is 

the second phase and lasts the 40% of all iterations which compose the complete optimization process. The computational 

procedure for the liquid state can be summarized as follows: 

Step 4: Set the parameters   [0.3, 0.6],   = 0.4,   = 0.2 and H=0.2 being consistent with the liquid state. 

Step 5: Apply the general procedure. 

Step 6: If the 90% (50% from the gas state and 40% from the liquid state) of the total iteration number is 

completed (0.5  gen <k   0.9  gen), then the process continues to the solid state procedure; otherwise go back to 

step 5. 

Solid state 

In the solid state, forces among particles are stronger so that particles cannot move freely but only vibrate. As a result, 

effects such as collision and generation of random positions are not considered .Therefore the   value of the direction 

vector operator is set to a value near to zero indicating that themolecules can only vibrate around their original positions. 

The solid state is the third phase and lasts forthe 10% of all iterations which compose the complete optimization process. 

The computational procedure for the solid state can be summarized as follows: 

Step 7: Set the parameters   [0.0, 0.1] and  = 0.1,  = 0 and H=0 being consistent with the solid state. 

Step 8: Apply the general procedure that is defined in Algorithm 1. 

Step 9: If the 100% of the total iteration number is completed (0.9 gen <k  gen), the process is finished; otherwise 

go back to step 8. 

It is important to clarify that the use of this particular configuration (  = 0 and H=0) disables the collision and generation 

of random positions operators which have been illustrated in the general procedure. 
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VI.     SIMULATION RESULTS 

The validity of the proposed SOMS Algorithm technique has been demonstrated in standard IEEE-30 bus system. The test 

system has six generators at the buses 1, 2, 5, 8, 11and 13 and four transformers with off-nominal tap ratio at lines6-9, 6-

10, 4-12, and 28-27 and the number of the optimized control variables is 10 for this  reactive power dispatch problem. The 

minimum voltage magnitude limits at all buses are 0.95 pu. The maximum limit values for generator buses are 1.1pu 

&1.05 pu for the remaining buses .The minimum and maximum limits of the transformers tapping are 0.9 and 1.1 pu. The 

optimum control parameter settings of the proposed SOMS approach are given in Table 1. And table 2&3 shows the 

comparison of power loss and voltage deviations. Form the simulation, the most excellent value of   active power loss is 

4.422661. The voltage deviations obtained from proposed SOMS approach 0.103558 respectively.   

Table I. Optimum control parameters values 

Control Variables setting 
Case 1: 

Power Loss 

Case 2: 

Voltage Deviations 

VG1 1.00 0.91 

VG2 1.01 0.92 

VG5 1.02 1.01 

VG8 1.01 1.01 

VG11 1.00 1.02 

VG13 0.91 1.01 

T6-9 1.00 0.90 

T6-10 1.01 1.01 

T4-12 1.01 1.02 

T27-28 1.01 0.91 

Power loss (MW) 4.422661 6.279079 

Voltage deviations  0.721243 0.103558 

Table II: Comparison of the Results for active Power Loss 

Control Variables 

Setting 
SOMS 

GSA 

[27] 

Individual 

Optimizations 

[28] 

Multi 

Objective 

EA [28] 

As Single 

Objective 

[28] 

VG1 1.02 1.049998 1.050 1.050 1.045 

VG2 1.03 1.024637 1.041 1.045 1.042 

VG5 1.02 1.025120 1.018 1.024 1.020 

VG8 1.01 1.026482 1.017 1.025 1.022 

VG11 1.03 1.037116 1.084 1.073 1.057 

VG13 0.91 0.985646 1.079 1.088 1.061 

T6-9 1.01 1.063478 1.002 1.053 1.074 

T6-10 1.02 1.083046 0.951 0.921 0.931 

T4-12 1.03 1.100000 0.990 1.014 1.019 

T27-28 1.03 1.039730 0.940 0.964 0.966 

Power Loss (Mw) 4.422661 4.616657 5.1167 5.1168 5.1630 

Voltage Deviations 0.721243 0.836338 0.7438 0.6291 0.3142 
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Table III: Comparison of the Results for voltage deviations 

Control Variables 

Setting 
SOMS 

GSA 

[27] 

Individual 

Optimizations 

[28] 

Multi 

Objective 

EA [28] 

As Single 

Objective 

[28] 

VG1 0.90 0.995371 1.009 1.016 1.021 

VG2 0.91 0.950069 1.006 1.012 1.021 

VG5 1.00 1.043033 1.021 1.018 1.021 

VG8 1.02 1.021292 0.998 1.003 1.002 

VG11 1.01 1.100000 1.066 1.061 1.025 

VG13 1.00 1.062669 1.051 1.034 1.030 

T6-9 0.91 0.905907 1.093 1.090 1.045 

T6-10 1.02 1.035611 0.904 0.907 0.909 

T4-12 1.02 1.038107 1.002 0.970 0.964 

T27-28 0.90 0.925607 0.941 0.943 0.941 

Power Loss (Mw) 6.279079 6.371609 5.8889 5.6882 5.6474 

Voltage Deviations 0.103558 0.106498 0.1435 0.1442 0.1446 

 

VII.     CONCLUSION 

In this paper, the SOMS has been successfully implemented to solve Optimal Reactive Power Dispatch problem. The 

proposed algorithm has been tested on the standard IEEE 30-bus system. The results are compared with other heuristic 

methods and the proposed algorithm demonstrated its effectiveness and robustness in minimization of real power loss and 

various system control variables are well within the acceptable limits   . 

REFERENCES 

[1] O.Alsac, and B. Scott, “Optimal load flow with steady state security”,IEEE Transaction. PAS -1973, pp. 745-751. 

[2] Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on 

power Apparatus and systems 1985: PAS-104 : 1147-1153 

[3] A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency 

corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. 

[4] DeebN, Shahidehpur S.M Linear reactive power optimization in a large power network using the decomposition 

approach. IEEE Transactions on power system 1990: 5(2) : 428-435 

[5] E. Hobson ,‟Network consrained reactive power control using linear programming, „ IEEE Transactions on power 

systems PAS -99 (4) ,pp 868=877, 1980 

[6] K.Y Lee ,Y.M Park , and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches” , IEE Proc; 

131C,(3), pp.85-93. 

[7] M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming” , 

Electr.PowerSyst.Res, Vol.26, pp.1-10,1993. 

[8] C.A. Canizares , A.C.Z.de Souza and V.H. Quintana , “ Comparison of performance indices for detection of proximity to 

voltage collapse ,‟‟ vol. 11. no.3 , pp.1441-1450, Aug 1996 . 

[9] S.R.Paranjothi, and K.Anburaja, “Optimal power flow using refined genetic algorithm”, Electr.PowerCompon.Syst , Vol. 

30, 1055-1063,2002. 

[10] D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-

Generation.Transmission and. Distribution; 152, 6 November 2005. 

[11] Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach to compare orpf objective functions including secondary 

voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. 



 

International Journal of Novel Research in Electrical and Mechanical Engineering 
Vol. 1, Issue 1, pp: (13-22), Month: September-December 2014, Available at: www.noveltyjournals.com 

 

Page | 22 
Novelty Journals 

 

[12] C.-F. Yang, G. G. Lai, C.-H.Lee, C.-T. Su, and G. W. Chang, “Optimal setting of reactive compensation devices with an 

improved voltage stability index for voltage stability enhancement,” International Journal of Electrical Power and Energy 

Systems, vol. 37, no. 1, pp. 50 – 57, 2012. 

[13] P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvements in voltage profiles and for real power loss 

minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 

43, no. 1, pp. 830 – 838, 2012. 

[14] B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactive power scheduling method for loss minimization and 

voltage stability margin maximization using successive multi-objective fuzzy lp technique,” IEEE Transactions on Power 

Systems, vol. 15, no. 2, pp. 844 – 851, may 2000. 

[15] W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary 

programming technique,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 – 918, may 2004. 

[16] W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithminterior point method for optimal reactive power 

flow,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006. 

[17] J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimal reactive power-flow model and its 

algorithm for ac-dc systems,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb. 2008. 

[18] F. Capitanescu, “Assessing reactive power reserves with respect to operating constraints and voltage stability,” IEEE 

Transactions on Power Systems, vol. 26, no. 4, pp. 2224–2234, nov. 2011. 

[19] Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch: Formulation and solution method,” 

International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621, 2010. 

[20] Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactive power procurement in hybrid electricity markets 

with uncertain loads,” Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. 

[21] Cuevas, E., Echavarria, A., Ramirez-Ortegon, M.A. An optimization algorithm inspired by the States of Matter that 

improves the balance between exploration and exploitation, Applied Intelligence, 40(2) , (2014), 256-272. 

[22] Ceruti 1, H. Rubin. Infodynamics: Analogical analysis of states of matter and information.Information Sciences 177, 

(2007), 969–987. 

[23] Debashish Chowdhury, Dietrich Stauffer, Principles of equilibrium statistical mechanics, 1° edition2000, Wiley-VCH. 

[24] David S. Betts, Roy E. Turner Introductory statistical mechanics, 1° edition 1992, Addison Wesley. 

[25] Yunus A. Cengel, Michael A. Boles, Thermodynamics: An Engineering Approach, 5 edition, 2005,McGraw-Hill. 

[26] Chaohua Dai, Weirong Chen, Yunfang Zhu, and Xuexia Zhang, “Seeker optimization algorithm for optimal reactive 

power dispatch,” IEEE Trans. Power Systems, Vol. 24, No. 3, August 2009, pp. 1218-1231. 

[27] S.Duman, Y. Sonmez, U. Guvenc, N. Yorukeran ,” application of gravitational search algorithm for optimal reactive 

power dispatch problem “ in IEEE trans on power system pp 519-523 , 2011 . 

[28] M. A. Abido, J. M. Bakhashwain, “A novel multiobjectiveevolutionaryalgorithm for optimal   reactive power dispatch 

problem,” in proc. Electronics, Circuits and Systems conf., vol. 3, pp. 1054-1057, 2003. 

 

Author’s Biography:  

K. Lenin has received his B.E., Degree, electrical and electronics engineering in 1999 from university of 

madras, Chennai, India and M.E., Degree in power systems in 2000 from Annamalai University, 

TamilNadu, India. Presently pursuing Ph.D.,degree at JNTU, Hyderabad, India. 

 

 

 Bhumanapally. RavindhranathReddy, Born on 3rd September,1969. Got his  B.Tech in Electrical & 

Electronics Engineering from the J.N.T.U. College of Engg., Anantapur in the year 1991. Completed his 

M.Tech in Energy Systems in IPGSR of J.N.T.University Hyderabad in the year 1997. Obtained his 

doctoral degree from JNTUA,Anantapur University  in the field of Electrical Power Systems. Published 12 

Research Papers and presently guiding 6 Ph.D. Scholars. He was specialized in Power Systems, High 

Voltage Engineering and Control Systems. His research interests include Simulation studies on Transients of different 

power system equipment. 


